Publications

Selected Publications

Contact our Centre for an E-copy of the listed publications. For a complete list of publications, please go to the principal investigator website.

Clostridium difficile

1.   Hirota, S., Iablokov, V., Tulk, S., Schenck, L., Becker, H., Nguyen, J., Al Bashir, S., Dingle, T., Laing, A., Liu, J., Li, Y., Bolstad, J., Mulvey, G., Armstrong, G., MacNaughton, W., Muruve, D., MacDonald, J., and Beck,P.  Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure. Infect. Immun. Infect. Immun80:4474-4484 (2013)

2.    Joshua L.Y., Hirota, S.A.,Glover, L., Armstrong, G.D. , Beck, P.L., and MacDonald, J.A. Effects of nitric oxide and reactive oxygen species on HIF-1a stabilization following Clostridium difficile toxin exposure of the Caco-2 epithelial cell line. Cell Physiol. Biochem32:417-430, (2013).

3.     Dingle, T.C., Mulvey, G.L. & Armstrong, G.D. Mutagenic analysis of the clostridium difficile flagellar proteins, flic and flid, and their contribution to virulence in hamsters. Infection and Immunity 79, 4061-4067 (2011).

4.      El-Hawiet, A., Kitova, E. N., Kitov, P., Eugenio, L., Ng, K. K. S., Mulvey, G. L., Dingle, T. C., Szpacenko, A., Armstrong, G. D. and Klassen, J. S. Binding of Clostridium difficile Toxins to Human Milk Oligosaccharides. Glycobiology 21, 1217-1227 (2011).

5.      Mulvey, G. L., Dingle, T. C., Fang, L., Strecker, J. and Armstrong, G. D. Therapeutic potential of egg yolk antibodies for treating Clostridium difficile infection. J. Med. Microbiol. 60, 1181-1187 (2011).

6.      Zhang, P., Razi, N., Eugenio, L., Fentabil, M., Kitova, E. N., Klassen, J. S., Bundle, D. R., Ng, K. K. S. and Ling, C.-C. Unexpected structure of a Clostridium difficile toxin A ligand necessitates an annotation correction in a popular screening library. Chem. Comm. 47, 12397-99 (2011).

7.      Dingle, T., Mulvey, G. L., Humphries, R. M. and Armstrong, G. D. A real-time quantitative PCR assay for evaluating Clostridium difficile adherence to differentiated intestinal Caco-2 cells. J. Med. Microbiol. 59, 920-924 (2010).

8.      Zhang, P., Ng, K. and Ling, C.-C. Efficient synthesis of LeA-LacNAc pentasaccharide as a ligand for Clostridium difficile toxin A. Org. Biomol. Chem. 8, 128-136 (2010).

9.      Dingle, T., Wee, S., Mulvey, G. L., Greco, A., Ng, K., Klassen, J. S. and Armstrong, G. D.. Functional properties of the carboxy-terminal host cell binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18, 698–706 (2008).

top

Heterobifunctional Ligands

1.    Jacobson, J. M., Kitov, P. I. and Bundle, D. R. The Synthesis of a multivalent heterobifunctional ligand for specific interaction with Shiga toxin 2 produced by E. coli O157:H7. Carbohydr. Res.,  378, 4-14, (2013).

2.    Kitov, P. I., Kotsuchibashi, Y., Paszkiewicz, E., Wilhelm, D., Narain, R.  Bundle, D. R. Poly(n-vinyl-2-pyrrolidone-co-vinyl alcohol) as a versatile amphiphilic polymeric scaffold for multivalent probes. Org. Lett. Accepted October 2013. http://dx.doi.org/10.1021/ol402315n

3.      Kitov, P. I., Paszkiewicz, E., Sadowska, J. M., Deng, Z., Ahmed, M., Narain, R., Griener, T., Mulvey, G. L., Armstrong, G. D. and Bundle, D. R. Impact of the nature and size of the polymeric backbone on the ability of heterobifunctional ligands to mediate Shiga toxin and serum amyloid P component ternary complex formation. Toxins 3, 1065-1088 (2011).

4.      Griener, T. P., Strecker, J., Humphries, R. M., Mulvey, G. L., Fuentealba, C., Hancock, R. E. W. and Armstrong, G. D. Lipopolysaccharide renders transgenic mice expressing human serum amyloid P component sensitive to Shiga toxin 2. PLoS One 6, e21457 (2011).

5.      Guiard, J., Langpap, B., Kitov, P., Peters, P. and Bundle, D. R. “Double-Click” Protocol for Synthesis of Heterobifunctional Multivalent Ligands: Toward a Focused Library of Specific Norovirus Inhibitors. Chem. Eur. J. 17, 7438-7441 (2011).

6.      Rademacher, C., Guiard, J., Kitov, P., Langpap, B., Dalton, K. P., Parra, F., Bundle, D. R. and Peters, P. Targeting Norovirus Infection – Multivalent Entry Inhibitor based on NMR Data. Chem. Eur. J. 17, 7442-7453 (2011).

7.      Kitov, P. I., Lipinski, T., Paszkiewicz, E., Solomon, D., Sadowska, J. M., Grant, G. G. A., Mulvey, G. L., Kitova, E. N., Klassen, J. S. Armstrong,G. D. and Bundle, D. R.. An entropically efficient supramolecular inhibition strategy for shiga toxins. Angew. Chem. Int. Ed. 47, 672–676 (2008).

8.    O’Reilly, M. K., Collins, B. E., Han, S., Liao, L., Rillahan, C.  Kitov, P. I., Bundle, D. R. and Paulson, J. C. Bi-functional CD22 ligands use multimeric immunoglobulins as protein scaffolds in assembly of immune complexes on B cells. J. Am. Chem. Soc. 130, 7736-7745 (2008).

9.      Kitov, P. I., Mulvey, G. L., Griener, T., Lipinski, T., Solomon, D., Paszkiewicz, E., Jacobson, J., Sadowska, J. M., Suzuki, M., Yamamura, K., Armstrong, G. D. and Bundle, D. R. In vivo supramolecular templating enhances the activity of multivalent ligands: A potential therapeutic against the E. coli O157 AB5 toxins. Proc. Natl. Acad. Sci. ( USA ) 105, 16837-16842 (2008).

10.      Kitova, E. N., Kitov, P. I., Paszkiewicz, E., Kim, J., Mulvey, G. L., Armstrong, G. D., Bundle, D. R. and Klassen, J. S. Affinities of Shiga toxins 1 and 2 for univalent and oligovalent pk trisaccharide analogs measured by electrospray ionization mass spectrometry. Glycobiology 17, 1156-1166 (2007).

top

Tuberculosis

1.  Wheatley, R. W., Zheng, R. B., Richards, M. R., Lowary, T. L., Ng, K. K. S. Tetrameric structure of GlfT2 reveals a scaffold for the assembly of mycobacterial arabinogalactan. J. Biol. Chem. 287, 28132–28143 (2012).

2.  Poulin, M. B., Zhou, R., Lowary, T. L. Synthetic UDP-galactofuranose analogs reveal critical enzyme–substrate interactions in GlfT2-catalyzed mycobacterial galactan assembly. Org. Biomol. Chem. 10, 4074–4087 (2012).

3. Liu, L., Bai, Y., Sun, N., Xia, L., Lowary, T. L., Klassen, J. S., Carbohydrate–Lipid Interactions. Affinities of Methylmannose Polysaccharides for Lipids in Aqueous Solution Chem. Eur. J.18, 12059–12067 (2012).

4.  Poulin, M. B., Shi, Y., Protsko, C., Dalrymple, S., Sanders, D. A. R., Pinto, B. M., Lowary, T. L., Specificity of a UDP-GalNAc pyranose–furanose mutase. A potential therapeutic target for Campylobacter jejuni Infections ChemBioChem

top

Electrospray Ionization Mass Spectrometry

1. Shams-Ud-Doha, Km; Kitova, Elena; Kitov, Pavel; St-Pierre, Yves; Klassen, John.  “Human Milk Oligosaccharide Specificities of Human Galectins. Comparison of Electrospray Ionization Mass Spectrometry and Glycan Microarray Screening Results.” Accepted for publication in Analytical Chemistry (March 2017).

2. El-Hawiet, A., Kitova, E.N., Klassen J.S. Recognition of Human Milk Oligosaccharides by Bacterial Exotoxins. Glycobiology. Submitted. (2015).

3. Hong, L., Kitova, E.N., Klassen, J.S. Quantifying Protein-Ligand Interactions by Direct ESI-MS Analysis. Evidence of Non-uniform Response Factors Induced by High Molecular Weight Molecules and Complexes Anal. Chem. 85, 8919–8922. (2013)

4.  El-Hawiet, A., Kitova, E.N., Klassen, J.S. Quantifying Protein Interactions with Isomeric Carbohydrate Ligands using a “Catch and Release” ESI-MS Assay Anal. Chem. 85, 7637–7644 (2013)

5. Zhang, Y.,  Liu, L., Daneshfar, R., Kitova, E.N., Li, C., Jia, F., Cairo, C.W.,  Klassen, J.S, Protein-Glycosphingolipid Interactions Revealed using Catch-and-Release Mass Spectrometry  Anal. Chem. 84, 7618–7621. (2012)

6. El-Hawiet, A., Shoemaker, G.K., Daneshfar, R., Kitova, E.K., Klassen, J.S., Applications of a Catch and Release Electrospray Ionization Mass Spectrometry Assay for Carbohydrate Library Screening Anal. Chem. 84, 50-58. (2012)

7. Kitova, E.N., El-Hawiet, A., Schnier, P.D., Klassen, J.S. Reliable Determinations of Protein-Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet?  (Critical Insight, Invited) J. Am. Soc. Mass Spectrom. 23, 431-441. (2012)

top

Outer Membrane Vesicles

1. McMahon, K.J., Castelli, M.E., García Véscovi, E. and Feldman, M.F. Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system. J. Bacteriol. 194:3241-9. (2012)

2. Haurat, M.F., Aduse-Opoku, J., Dorobantu, L., Rangarajan, M., Gray, M., Curtis, M.A., Feldman, M.F., Selective sorting of cargo proteins into bacterial vesicles. J. Biol. Chem 286:1269-76. (2011)

top

Glycoengineering

1. Lees-Miller, R.G., Iwashkiw, J.A., Scott, N.E., Seper, A., Vinogradov, E., Schild, S., Feldman, M.F. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol. 89:816-30. (2013)

2. Iwashkiw, J.A., Vozza, N.F., Kinsella, R.L., Feldman, M.F. Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol Microbiol. 89:14-28. (2013)

3. Musumeci, M.A., Hug, I., Scott, N.E., Ielmini, M.V., Foster, L.J., Wang, P.G., Feldman, M.F. In vitro activity of Neisseria meningitidis PglL O-oligosaccharyltransferase with diverse synthetic lipid donors and a UDP-activated sugar. J Biol Chem. 288:10578-87. (2013)

4. Ciocchini, A.E., Rey Serantes, D.A., Melli, L.J., Iwashkiw, J.A., Deodato, B., Wallach, J., Feldman, M.F., Ugalde, J.E., Comerci, D.J. Development and validation of a novel diagnostic test for human brucellosis using a glyco-engineered antigen coupled to magnetic beads. PLoS Negl Trop Dis. 7:e2048. (2013)

5. Iwashkiw, J., Seper, A., Weber, B.S., Scott, N.E., Vinogradov, E., Stratilo, C., Reiz, B., Cordwell, S.J., Whittal, R., Schild, S., and Feldman, M.F. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8:e1002758. (2012)

6. Faridmoayer, A., Fentabil, M.A., Haurat, M.F., Yi, W., Woodward, R., Wang, P.G., and Feldman, M.F. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein Oglycosylation. J. Biol. Chem. 283:34596-604. (2008)

top

Exploitation of glycan interactions in the gut

1.  Poulin, M. B., Shi, Y., Protsko, C., Dalrymple, S., Sanders, D. A. R., Pinto, B. M., Lowary, T. L., Specificity of a UDP-GalNAc pyranose–furanose mutase. A potential therapeutic target for Campylobacter jejuni Infections ChemBioChem 15(1):47-56, (2014)

2. Javed, M.A., Poshtiban, S., Arutyunov, D., Evoy, S. and Szymanski, C.M. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One. 18;8(7):e69770 (2013)

3.  Nothaft, H. and Szymanski, C.M. Bacterial N-glycosylation – New perspectives and applications. J. Biol. Chem, 288: 6912-6920 (2013).

4. Nothaft, H., Scott, N.E., Vinogradov, E., Liu, X., Hu, R., Li, J., Beadle, B., Fodor, C., Miller, W.G., Cordwell, S.J. and Szymanski, C.M. Diversity in the Campylobacter N-glycosylation pathway. Mol. Cell. Proteomics, 11: 1203- 1219 (2012).

5. Szymanski, C.M. and Gaynor, E.C. How a sugary bug gets through the day: recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes, 3: 1-10 (2012).

6. Sorensen#, M.C., van Alphen#, L.B., Fodor, C., Crowley, S., Bak-Christensen, B., Szymanski, C.M.and Brondsted, L. Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Frontiers Cell. Infect. Microbiol, 2:11, doi: 10.3389/fcimb.2012.00011 (2012). #Both authors contributed equally.

7. Stahl, M., Friis, L.M., Nothaft, H., Liu, X., Li, J., Szymanski*, C.M., and Stintzi*, A. L-fucose utilization provides Campylobacter jejuni with a competitive advantage. PNAS, 108: 7194-7199 (2011). *Joint corresponding authors.

top

Candida albicans

1.      Bundle, D. R., Costello, C., Nycholat, C., Lipinski, T. and Rennie, R. Designing a Candida albicans Conjugate Vaccine by Reverse Engineering Protective Monoclonal Antibodies in Anticarbohydrate Antibodies: From Molecular Basis to Clinical Application, edited by P. Kosma and S. Muller-Loennies Springer, 121-146, January 2012.

2.      Lipinski, T., Kitov, P., Szpacenko, A., Paszkiewicz, E. and Bundle, D. R. Synthesis and Immunogenicity of a Glycopolymer Conjugate. Bioconjugate Chem. 22, 274–281 (2011).

3.      Xin, H., Dziadek, S., Bundle, D. R. and Cutler, J. Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proc. Natl. Acad. Sci. ( USA ) 105, 13526-13531 (2008).

top

Tolerogens

1.      Meloncelli, P. J., West, L. J. and Lowary, T. L.  Synthesis and NMR Studies on the ABO Histo-Blood Group Antigens: Synthesis of Type III and IV Structures and NMR Characterization of Type I–VI Antigens. Carbohydr. Res. 346, 1406–1426 (2011).

2.      Slaney, A. M., Wright, V. A., Meloncelli, P. J., Harris, K. D., West, L. J., Lowary, T. L. and Buriak, J. M. Biocompatible Carbohydrate-Functionalized Stainless Steel Surfaces: A New Method for Passivating Biomedical Implants. ACSApp. Mater. Interfaces 3, 1601–1612 (2011).

3.      Meloncelli, P. J. and Lowary, T. L. Synthesis of ABO Histo-blood Group Type I and II Antigens. Carbohydr. Res. 345, 2304–2321 (2010).

top

Cyclodextrins

1.      Wang, A., Li, W., Zhang, P. and Ling, C.-C. Synthesis of a Novel Class of Biodegradable Nanotubes. Org. Lett. 13, 3572-3575 (2011).

2.      Ghosh, R., Zhang, P., Wang, A. and Ling, C.-C. Diisobutylaluminum Hydride-Mediated Regioselective O-Desilylations as a Novel Route to Access Multisubstituted Cyclodextrins. Angew. Chem. Int . Ed.  DOI: 10.1002/anie.201105737 (2011).

3.      Ward, S. and Ling, C.-C. Efficient and Versatile Modification of the Secondary Face of Cyclodextrins via Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Eur. J. Org. Chem. 4853-4861 (2011).

4.      Rawal, G. K., Zhang, P. and Ling, C.-C. Controlled synthesis of linear α-cyclodextrin oligomers using copper-catalyzed Huisgen 1,3-dipolar cycloaddition. Org. Lett. 12, 3096-3099 (2010).

5.      Rawal, G. K., Rani, S., Ward S. and Ling, C.-C. DIBAL-H mediated triple and quadruple debenzylations reactions of perbenzylated cyclodextrins. Org. Biomol. Chem. 8, 171-180 (2010).

top

Neuraminidase

1.      Albohy, A., Zhang, Y., Smutova, V., Pshezhetsky, A. V., and Cairo, C. W. Identification of Selective Nanomolar Inhibitors of the Human Neuraminidase, NEU4. ACS Med. Chem. Lett. 4, 532–537. (2013)

2.      Sandbhor, M. S., Soya, N, Albohy, A., Zheng, R. B., Cartmell, J., Bundle, D. R., Klassen, J. S. and Cairo, C. W. Substrate recognition of the membrane-associated sialidase NEU3 requires a hydrophobic aglycone. Biochemistry 50, 6753-5762 (2011).

3.     Zhang, Y., Albohy, A., Zou, Y., Smutova, V., Pshezhetsky, A., and Cairo, C. W. Identification of selective inhibitors of human sialidase isoenzymes using C4, C7-modified 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) analogs. J. Med. Chem. 56, 2948–2958. (2013)

4.      Albohy, A., Li, M. D., Zheng, R. B., Zou, C. and Cairo, C.W. Insight into recognition and catalysis of the mammalian neuraminidase 3 (NEU3) through molecular modeling and site directed mutagenesis. Glycobiology 20, 1127-1138 (2010).

5.     Zou, Y., Albohy, A., Sandbhor, M. and Cairo, C. W.  Inhibition of the human neuraminidase 3 (NEU3) by C9-triazole derivatives of 2,3-didehydro-N-acetylneuraminic acid. Bioorg. Med. Chem. Lett. 20, 7529-7533 (2010).

back to top